Лекция 6. Контейнеризация Docker: образы, сети, тома, Compose. Практики конфигурации
Цель лекции: понять базовые сущности Docker (образ, контейнер, сеть, том), научиться читать и писать Dockerfile и docker‑compose.yml, а также освоить практики конфигурации и эксплуатации сервисов для smart‑систем (брокер сообщений, БД, сервис ingestion, dashboards) в контейнерах.
1. Зачем Docker в smart‑системах
Smart‑системы обычно состоят из набора микросервисов: брокер MQTT, обработчик телеметрии, TSDB/SQL‑БД, сервис авторизации, визуализация (Grafana), API и т.д. Docker помогает:
• быстро развернуть окружение одинаково на dev/test/prod;
• изолировать зависимости (версии Python/Java, библиотеки);
• воспроизводимо обновлять компоненты (образы версионируются);
• упростить CI/CD и масштабирование.

Важно понимать: Docker не “виртуальная машина”. Контейнеры используют ядро ОС хоста и изолируются через namespaces/cgroups.
2. Базовые понятия
• Образ (image) — шаблон файловой системы + метаданные (как “слепок” приложения).
• Контейнер (container) — запущенный экземпляр образа (процесс(ы) + изоляция).
• Registry — хранилище образов (Docker Hub, GitLab registry, Harbor).
• Dockerfile — рецепт сборки образа.
• Compose — декларативное описание набора сервисов и их связей (docker compose up).
3. Образы (images): как устроены и как собирать
Docker‑образ состоит из слоёв (layers). Каждая инструкция Dockerfile обычно добавляет слой.
Плюсы слоёв:
• кэширование (ускоряет сборку);
• переиспользование общих слоёв для разных сервисов.

Базовый цикл:
1) написать Dockerfile
2) docker build -t myservice:1.0 .
3) docker run … myservice:1.0
3.1 Мини‑шаблон Dockerfile
Правильная структура: сначала то, что меняется редко (системные пакеты), потом код.
Ключевые практики:
• фиксируйте версии базового образа (python:3.12-slim), не используйте latest;
• минимизируйте слои и размер образа;
• используйте non-root пользователя;
• отделяйте build stage и runtime (multi-stage build), если нужно.
3.2 Команды Dockerfile (самые важные)
• FROM — базовый образ
• WORKDIR — рабочая директория
• COPY / ADD — добавить файлы в образ (COPY предпочтительнее)
• RUN — команды сборки (установка пакетов)
• ENV — переменные окружения (но секреты туда не кладут!)
• EXPOSE — документирует порт
• USER — запуск не под root
• CMD / ENTRYPOINT — команда запуска контейнера
4. Сети Docker (networks): как сервисы общаются
Docker создаёт виртуальные сети, чтобы контейнеры общались по именам сервисов.
Типы сетей:
• bridge (по умолчанию) — локальная сеть на одном хосте;
• host — контейнер использует сеть хоста напрямую;
• overlay — сеть для кластера (Swarm/Kubernetes).

Практика для Compose: используйте отдельную bridge‑сеть, и обращайтесь по имени сервиса (например, mqtt-broker:1883, postgres:5432).
4.1 Порты: published vs exposed
• EXPOSE — просто “подсказка”, порт внутри контейнера.
• ports в Compose — публикация порта на хост: "1883:1883".
Если сервис нужен только внутри Compose‑сети, можно не публиковать порт наружу.
5. Тома (volumes): данные не должны жить в контейнере
Контейнеры “эфемерные”: при пересоздании контейнера данные внутри файловой системы теряются. Поэтому БД и состояние нужно хранить в volumes.

Виды:
• named volume — управляется Docker (например, pgdata)
• bind mount — папка хоста монтируется внутрь контейнера (удобно для dev)

Пример: для PostgreSQL всегда используйте volume для /var/lib/postgresql/data.
6. Docker Compose: запуск набора сервисов
Compose описывает несколько контейнеров и их конфигурацию:
• services (контейнеры)
• networks
• volumes
• environment
• depends_on

Команды:
• docker compose up -d
• docker compose logs -f <service>
• docker compose down
• docker compose ps
6.1 Структура docker-compose.yml (что важно)
• image или build — откуда брать контейнер
• ports — публикация портов
• environment — параметры запуска (НЕ секреты в открытом виде)
• volumes — постоянные данные
• networks — сегментация и изоляция
• healthcheck — проверка готовности сервиса
• restart — политика рестарта (unless-stopped / on-failure)
7. Практики конфигурации (Best Practices)
7.1 Конфигурация через переменные окружения
12‑Factor подход: конфигурация отделена от кода.
• используйте .env для локальной разработки;
• в продакшене — секрет‑менеджер (Vault, Kubernetes Secrets, GitLab CI variables);
• не храните пароли в репозитории.

Пример: DB_HOST, DB_PORT, DB_USER, DB_NAME, MQTT_URL, LOG_LEVEL.
7.2 Секреты
Секреты (пароли, токены, сертификаты) нельзя “зашивать” в образ и нельзя писать в публичный compose.
Варианты:
• Docker secrets (в Swarm);
• Kubernetes Secrets;
• внешние секрет‑хранилища.
Для учебных стендов можно использовать .env, но объясняйте студентам риск.
7.3 Healthchecks и порядок запуска
depends_on не гарантирует готовность БД/брокера, он только задаёт порядок старта. Для устойчивости:
• добавляйте healthcheck к postgres/mqtt;
• в приложении делайте retry подключения (exponential backoff);
• отделяйте миграции БД в отдельный job/контейнер.
7.4 Логи и наблюдаемость
Для эксплуатации smart‑платформы важны логи и метрики:
• stdout/stderr → docker logs
• централизованные логи (ELK/OpenSearch) — опционально
• метрики (Prometheus) и дашборды (Grafana)
• трассировки (OpenTelemetry) — на продвинутом уровне
7.5 Ресурсы и лимиты
На одном сервере несколько контейнеров конкурируют за ресурсы. В продакшене задают лимиты CPU/RAM (особенно в оркестраторах).
Даже в Compose полезно понимать:
• что будет при memory pressure
• как избежать “съедания” диска логами
• как измерять нагрузку контейнеров (docker stats).
8. Пример учебного стенда smart‑системы в Compose (идея)
Состав:
• mqtt-broker (Mosquitto)
• timeseries (InfluxDB или TimescaleDB)
• postgres (справочники/пользователи)
• ingestion-service (Python/Node)
• grafana (дашборды)

Лабораторная может включать: публикацию телеметрии в MQTT, запись в TSDB, визуализацию в Grafana.
9. Частые ошибки
• Хранить данные БД внутри контейнера без volume → потеря данных при пересоздании.
• Открыть наружу все порты “на всякий случай” → риск безопасности.
• Использовать latest и плавающие версии → “вчера работало, сегодня нет”.
• Нет healthcheck и retry → сервисы падают при старте.
• Секреты в docker-compose.yml или в образе → утечка ключей.
• Слишком большой образ (ненужные пакеты, кэш) → медленные деплои.
10. Итоги
• Docker упрощает развёртывание микросервисов smart‑систем и делает окружение воспроизводимым.
• Образы и слои требуют дисциплины: версии, минимизация, non‑root.
• Сети и тома — основа корректной изоляции и сохранности данных.
• Compose позволяет запускать учебные и стендовые платформы “одной командой”.
• Практики конфигурации (env, secrets, healthchecks, logs) критичны для надёжности.
Самопроверка (8 вопросов)
• В чём отличие образа от контейнера?
• Почему нельзя хранить состояние БД внутри контейнера без volume?
• Когда нужен bind mount, а когда named volume?
• Чем отличается EXPOSE от публикации ports?
• Почему depends_on не гарантирует готовность сервиса и что делать?
• Какие способы хранения секретов существуют?
• Как организовать сеть, чтобы БД была доступна только внутренним сервисам?
• Какие три best practices вы примените в Dockerfile для production?
